2014年8月25日 星期一
2014年8月1日 星期五
[ProjectEuler] 423
Problem: http://projecteuler.net/problem=423
Super slow code.
Time complexity: O(n^2 / ln(n))
I need to think another way to solve it.
Super slow code.
Time complexity: O(n^2 / ln(n))
I need to think another way to solve it.
import bisect import sys class ConsecutivePrimeCountingFunction(): def __init__(self): self.primes = [] self.pos = 0 self._init_primes() def _init_primes(self): #SIEVE_RANGE = 50100 SIEVE_RANGE = 50000100 sieve_visited = [False] * SIEVE_RANGE sieve_visited[0] = sieve_visited[1] = True for i in range(2, SIEVE_RANGE): if sieve_visited[i] is False: self.primes.append(i) for j in range(i + i, SIEVE_RANGE, i): sieve_visited[j] = True print('Total prime count:', len(self.primes)) def get(self, n): if n >= self.primes[self.pos]: self.pos += 1 return self.pos def reset(self): self.pos = 0 def get_directly(self, n): return bisect.bisect(self.primes, n) class Problem(): def __init__(self): self.mod = 1000000007 self.consecutive_prime_counting_function = ConsecutivePrimeCountingFunction() def solve(self): for n in [50000000]: #print(self.S(n)) print(self.S_lite(n)) def S_lite(self, L): max_count = self.consecutive_prime_counting_function.get_directly(L) + 1 consecutive_map = [0 for count in range(max_count)] consecutive_map[0] = 1 print('Big data structure |consecutive_map| is ready') result = 6 # Trivial case for C(1) = 6 self.consecutive_prime_counting_function.reset() for i in range(2, L+1): if i % 1000 == 0: print('Curr:', i, '=>', result) pos = self.consecutive_prime_counting_function.get(i) prev = consecutive_map[0] consecutive_map[0] = 5 * prev for count in range(1, max_count): curr = consecutive_map[count] if curr == 0 and prev == 0: break consecutive_map[count] = curr * 5 + prev prev = curr result = (result + sum(consecutive_map[:pos + 1]) * 6) % self.mod return result def C(self, n): max_count = self.consecutive_prime_counting_function.get_directly(n) + 1 consecutive_map = [0 for count in range(max_count)] consecutive_map[0] = 1 for i in range(n - 1): next_consecutive_map = [0 for count in range(max_count)] next_consecutive_map[0] = consecutive_map[0] * 5 for count in range(1, max_count): next_consecutive_map[count] = consecutive_map[count] * 5 + consecutive_map[count - 1] consecutive_map = next_consecutive_map result = sum(consecutive_map) * 6 return result def S(self, L): return sum([self.C(n) for n in range(1, L + 1)]) % self.mod def main(): problem = Problem() problem.solve() if __name__ == '__main__': sys.exit(main())
訂閱:
文章 (Atom)